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The stress and conformational relaxation of an initially straight flexible polymer is
studied through Brownian dynamics simulations covering a broad range of time scales
and polymer lengths. At short times t � N−2, the strong stress component scales as
σ11 ∼ N 3 (‘1’ is the direction of the original alignment), while the weak component
is σ22 ∼ N (where N is the polymer length). At intermediate times N−2 � t � N2, the
stress decay is shown to be anisotropic: σ11 ∼ N 2t−1/2 while σ22 ∼ N 1/2t−1/4. At long
times t � N2, both stress components show the same exponential decay associated
with the reduction of the chain’s length, while their magnitudes are still different;
σ11 = O(N ) while σ22 = O(1). The configuration relaxation is studied over the same
extended time periods by employing scaling laws for the evolution of the eigenvalues
of the gyration tensor. After the short-time free diffusion, the configuration relaxation
is anisotropic at intermediate times: the chain’s width grows as R⊥ ∼ N−1/4t3/8 while its
length is reduced as R‖(0) − R‖ ∼ t1/2. During long times, the polymer length shows an
exponential decay towards the equilibrium coil-like shape. The polymer chain remains
aligned along the original direction until late in long times where the chain rotation
is shown to be significant. The chain is shown to be far from equilibrium during
the entire transient relaxation. By focusing on the chain’s longitudinal relaxation,
a quasi-steady equilibrium of the link tensions in shown to exist along the chain’s
length; the mechanism is identical to that found in Grassia & Hinch (1996) based on a
sideways motion model. This mechanism also explains the ability of the FENE model
to describe the longitudinal relaxation of the flexible bead-rod chain. A comparison
with experimental findings from initially straight single tethered DNA molecules is
also included.

1. Introduction
The present study considers the relaxation of a single flexible polymer chain from

an initial straight configuration in a viscous solvent. Physically, this problem may
correspond to the case of a polymer chain fully stretched by an (infinitely) strong
flow and then relaxed by switching the flow off. This problem is also motivated by
recent experiments with single DNA molecules relaxing after being fully extended
by applied forces as well as by the recent development of micro-devices involving
stretched tethered biopolymers (e.g. Perkins et al. 1994, 1999; Wuite et al. 2000).
As is well known, large stresses are developed even in dilute polymer solutions
involving fully stretched polymer chains (Doyle et al. 1998). Thus, our interest lies
in understanding the mechanisms of relaxation of these stresses. In this article, we
present the stress relaxation over a broad range of time scales and polymer lengths.
We also study the configuration relaxation which causes the relaxation of stress over
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the same time periods and polymer lengths. From a theoretical point of view, the
present problem is further motivated by the fact that the experiment starts with a
straight configuration (i.e. a chain configuration far from equilibrium) and moves
towards the equilibrium coil-like shape. The interest lies not only on the chain’s
properties far from equilibrium, but also on how the chain approaches equilibrium.

Based on previous studies (Grassia & Hinch 1996, hereinafter referred to as GH;
Doyle et al. 1997, 1998), we have a good idea of the polymer relaxation. Immediately
after the chain is left to relax from the straight configuration, the transverse component
of the tension force on each bead is much smaller than the corresponding component
of the Brownian forces, and the beads show a free diffusion (the mean-square sideways
displacement scales with time t). As the transverse tension forces increase with time,
they balance the Brownian forces and the free transverse bead diffusion is arrested;
this happens at times t ∼ N−2 where N is a dimensionless expression for the polymer
length (i.e. the number of links). At intermediate times, a quasi-static balance between
link tension and bead diffusion produces a mean-square transverse link growth of t1/2

(GH). At the straight configuration, the strong stress component along the direction
of the initial extension scales as N3 and remains constant at short times, while it
shows a power law decay t−1/2 at intermediate times. Finally, at long times, the stress
shows a Rouse-like exponential decay towards equilibrium with a relaxation rate
higher than that predicted by the Rouse model (GH; Doyle et al. 1997).

We note that the previous studies report only on the strong component σ11 of the
polymer stress (where ‘1’ is the direction of the initial extension) (GH), or on the stress
difference σ11 − σ22 which scales as σ11 (Doyle et al. 1997, 1998), with rather limited
investigation of the configuration relaxation. In this study, we investigate again the
relaxation of the strong stress σ11 over a much broader range of time scales and
polymer lengths. In addition, the entire relaxation of the weak stress component σ22

is presented, which follows a different power law decay at intermediate times, i.e. the
stress decay is anisotropic at these times (see § 3). Although for an incompressible fluid
only the stress difference is meaningful, knowledge of both components of the poly-
mer stress helps us understand better the polymer relaxation. In particular, the
anisotropy in the stress decay suggests a corresponding anisotropy in the configuration
relaxation (as shown in § 4).

We also provide a detailed study of the configuration relaxation in § 4. To the
best of our knowledge, so far, the configuration relaxation has been monitored for
short chains and times only, i.e. for periods much shorter than those of the polymer
stress, owing to a shortage of appropriate configuration functions. In this study, we
present both the longitudinal and transverse conformational relaxation for the same
extended time periods and polymer lengths as our results for the stress relaxation.
We achieve this by employing scaling laws for the relaxation of the eigenvalues of the
gyration tensor; their evolution is shown to be an appropriate measurement of the
configuration evolution for the entire chain and its impact on the stress relaxation.
The configuration relaxation is concluded by studying the rotation of the entire chain
and the motion of the chain’s centre of mass.

Our numerical results for the conformational evolution of the polymer chain reveal
that over an extended intermediate-time period the chain shows a different power-
law transverse evolution (t3/4) than that of the links (t1/2). The chain’s longitudinal
relaxation is also studied over the entire polymer relaxation. Based on our results
for the longitudinal relaxation, a quasi-steady equilibrium of the tension forces in
the longitudinal direction is shown to exist at intermediate times; the mechanism
is identical to that found in Grassia & Hinch (1996) based on a sideways motion
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model. This mechanism is in agreement with the recent findings of Ghosh et al. (2001)
where the longitudinal force along a Cramer’s chain was numerically determined as
a function of the chain length and was shown to follow the predictions of the FENE
model during relaxation (as discussed in § 5.2). The polymer chain is shown to be
far from equilibrium even at the long times of transient dynamics, while it should
approach equilibrium near the end of the long-time behaviour where monitoring
transient properties produces results indistinguishable from the noise of the Brownian
motion.

We conclude our study by comparing our numerical results with the experimental
findings from initially straight single tethered DNA molecules (Perkins et al. 1994).
Our results are in excellent qualitative agreement with these experiments and suggest
a detailed study of tethered polymers.

2. Mathematical formulation
A discretized version of the flexible wormlike chain model (e.g. Doi & Edwards

1996; Yamakawa 1997) is employed based on a Brownian dynamics method developed
in Grassia & Hinch (1996). This method considers a bead-rod model with fixed bond
lengths and ignores hydrodynamic interactions among beads as well as excluded-
volume effects. The polymer chain is modelled as NB = (N +1) identical beads
connected by N massless links of fixed length b (which is used as the length unit). The
position of bead i is denoted as X i , while the link vectors are given by d i = X i+1 − X i .
For a fixed b, the properties of the polymer chain are specified by the (constant)
contour length of the chain L or equivalently by the number of links N .

Assuming that the bead inertia is negligible, the sum of all forces acting on each
bead i must vanish, which leads to the following Langevin equation

ζ
dX i

dt
= Frand

i + Ften
i + Fcor

i , (1)

where the friction coefficient ζ is assumed to be uniform (GH). Frand
i is the

Brownian force due to the constant bombardments of the solvent molecules. The
force Ften

i = Tid i − Ti−1d i−1, where Ti is a constraining tension along the direction of
each link d i , ensures the link inextensibility. Finally, Fcor

i is a corrective potential force
added so that the equilibrium probability distribution of the chain configurations is
Boltzmann (Fixman 1978; GH). The resulting system of equations may be solved
in O(N ) operations (GH). Ensemble averages are determined by employing 104 to
105 independent initial configurations. All properties presented in this paper are
calculated as, and refer to, the ensemble averages of the corresponding instantaneous
values. Thus, the polymer stress refers to the ensemble-averaged polymer stress (and
not to the instantaneous value) while the three eigenvalues of the gyration tensor
presented below are calculated as ensemble averages of the instantaneous values of
the eigenvalues.

The Brownian forces give rise to a microscopic time scale associated with the
diffusive motion of one bead, τrand = ζb2/kBT , which is used as the unit for the times

reported in this work if no other unit is used. The polymer stress σ = −
∑N+1

i=1 X i Ftotal
i ,

where Ftotal
i is the sum of all forces appearing on the right-hand side of (1), is

calculated efficiently by eliminating the fluctuating terms of large magnitude which
produce vanishing expectation values, as discussed in Grassia & Hinch (1996). In
the following sections, we present the polymer stress in units of kBT . The numerical
method employed in this work has been used to study semiflexible polymers near
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equilibrium (Dimitrakopoulos, Brady & Wang 2001) and will not be discussed further
in the present paper.

3. Stress relaxation
Forcing a flexible polymer chain to obtain a straight configuration, the polymer

accumulates only normal stresses which decay as the chain relaxes towards the
equilibrium coil-like shape. Assuming that ‘1’ is the direction of the initial
configuration, the strong component of the normal stress is σ11, while the other two
components are equal, σ22 = σ33, owing to symmetry. Also, no shear stress develops
in our system (i.e. σij = 0 for any i �= j ). At equilibrium, the stress is simply σ = −I
(where I is the unit 3 × 3 matrix, e.g. σ11 = σ22 = −1) owing to the motion of the
centre of mass (as discussed at the end of § 4). Subtracting the equilibrium value,
the two independent non-zero components of stress (σ11 and σ22) have opposite
signs since in the ‘1’ direction the polymer chain is being compressed while in the
other two directions the chain is being extended. (Based on the way we define the
stress, σ11 + 1> 0 while σ22 + 1< 0.) Thus in the figures below, we plot the strong
component as (σ11 + 1), and the weak component as −(σ22 + 1). The polymer length
may be presented by either the number of beads NB or the number of links N .
Obviously, for long enough chains, there is no difference; but for small to moderate
length chains, the difference may be significant. Thus in the figures below, we use that
number which produces the best fitting in the scaling laws with the understanding
that for long enough chains there is no distinction. A discussion on the time scale for
the stress relaxation of discrete chains at intermediate and long times will be included
in due course.

Figure 1 shows the stress relaxation at early times, for chains with length varying
from N = 5 to 400. For each length, the stress relaxation is determined for a short
time period only, enabling us to study very long chains. On the other hand, by the
use of scaling laws, these curves can reveal the polymer behaviour over broad time
periods as shown below. The curves for small chain lengths (N = 5, 10, 20) reveal the
entire stress relaxation: at early times there is a plateau since no stress relaxation is
significant yet; after the plateau, the appearance of a power law decay is evident at
intermediate times; and, finally, there is an exponential decay at long times. As the
figure shows, the stress of a straight chain is higher for longer chains while both stress
components, σ11 and σ22, show the same qualitative behaviour.

The scaling behaviour for the magnitude of the initial stress and the initial decay
is shown in figure 2, where, after replotting our data, all curves fall on each other at
short times. Thus, initially σ11 ∼ N 3 while its exact value is in excellent agreement with
the prediction of N (1/3N2 + N +5/3) − (N + 1) presented in the work of Grassia &
Hinch (1996). The other stress component is exactly σ22 = −(N +1), revealing that this
component is much weaker, i.e. the large stresses developed in dilute polymer solutions
under extensional flows are mainly associated with the strong σ11 component. The
strong stress component results from the requirement to maintain link inextensibility;
i.e. σ11 is caused by O(N 2) link tensions over N links (GH). The weak stress component
σ22 results from the transverse component of the Brownian forces, i.e. O(1) stresses
per link over N links. (More details are given in § 5.) This figure also reveals that the
initial decay from the plateau occurs at times t ∼ N−2 for both stress components.

The stress relaxation at intermediate times is shown in figure 3, where after
replotting the same data as before, a power law decay is clearly evident over several
time decades. In particular, the strong stress component σ11 shows a power law decay
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Figure 1. Relaxation of the polymer chain at short times. (a) Stress component (σ11 + 1)
versus time for polymer length N = 5, 10, 20, 40, 80, 160, 400. (b) As in (a) but for the stress
component (σ22 + 1). (Note that this stress component is negative.)

of t−1/2 while the weak component σ22 decays as t−1/4. Thus, an anisotropy in the
stress relaxation is observed at intermediate times. We note that in the work of
Grassia & Hinch (1996) the numerical results for σ11 in their figure 6 were rather
limited, while in Doyle et al. (1998) a clear power law decay t−1/2 was shown in their
figure 4 for σ11 − σ22 ∼ σ11. In our figure 3, beyond the clear evidence of the power
law decay over several time decades, the new information provided is the behaviour
of the weak stress component σ22 as well as our preference for the time scale.

In particular, in figure 3 the time has been scaled with τnmode which is the exact value
of the time scale for the relaxation of the first normal mode (and for the long-time
relaxation of the end-to-end vector) of the Rouse model,

τnmode = τrand

[
12 sin2

(
π

2(N + 1)

)]−1

. (2)

By employing this value for the time scale, we avoid possible misfitting of the data for
small and moderate chain length N . For large N , τnmode = τrand N2/(3π2); thus, based
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Figure 2. Scaling law for the stress relaxation at short times. (a) Stress component (σ11 + 1)
scaled with N3

B versus time t scaled with N−2
B for polymer length N = 5, 10, 20, 40, 80, 160, 400.

(b) As in (a) but for the stress component (σ22 + 1) scaled with N .

on our figure at intermediate times the polymer stress is

σ11

N
∼

(
t

N2

)−1/2

or σ11 ∼ N 2t−1/2, (3)

σ22 ∼
(

t

N2

)−1/4

or σ22 ∼ N 1/2t−1/4. (4)

At long times, the polymer stress is expected to follow a Rouse-like exponential
decay towards equilibrium. Based on numerical results, Grassia & Hinch (1996)
reported that at long times σ11 ∼ N exp(−70.2t/N2) or N exp(−2.4t/τnmode). The same
result was reported for (σ11 − σ22) in Doyle et al. (1997). Based on these results,
the bead-rod model shows a faster exponential decay than that predicted by the
Rouse model, (σ11)Rouse ∼ exp(−6π2t/N2) or exp(−2t/τnmode). Figure 4 shows the stress
relaxation at long times for chains with length varying from N = 5 to 40. As this
figures reveals, both stress components show an exponential decay ∼ exp(−2.3t/τnmode),
faster than that predicted by the Rouse model and in good agreement with the previous



Stress and configuration relaxation of an initially straight flexible polymer 271

–1/2

5
10

20
40

80
160

N = 400

(a)

–1/4

5
10

20
40

80
160

N = 400

(b)

106

104

102

100

10–2

104

102

100

10–2

10–13 10–11 10–9 10–7 10–5 10–3 10–1 101

10–13 10–11 10–9 10–7 10–5 10–3 10–1 101

(σ11 + 1)

–(σ22 + 1)

Time, t/τnmode

N

Figure 3. Scaling law for the stress relaxation at intermediate times. (a) Stress com-
ponent (σ11 + 1) scaled with N versus time t scaled with τnmode for polymer length
N =5, 10, 20, 40, 80, 160, 400. (b) As in (a) but for the stress component (σ22 + 1) unscaled.

numerical studies. (Note that the slope of −1 shown in figure 4 has been multiplied
by ln 10 ≈ 2.3.) In addition, the strong stress component is σ11 = O(N ), while the weak
component is σ22 = O(1). (The small expectation value of σ22 results in an increased
noise in the numerical results in figure 4b.) We emphasize again that by scaling our
data at long times with the exact value of τnmode , we avoid misfitting of curves for
small values of N as commonly happens when the time scale N2 (valid for long chains
N � 1) is employed.

As a closure for this section, we show that simple scaling arguments can predict
the stress relaxation at intermediate times. In particular, the strong stress component
is σ11 = O(N 3) at short times t = O(1/N 2), while σ11 = O(N ) at long times t = O(N 2).
Matching these two stresses at intermediate times with a single power law ta gives

(σ11)short = N 3(N2t)a = (σ11)long = N

(
t

N2

)a

, (5)
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Figure 4. Scaling law for the stress relaxation at long times. (a) Stress component (σ11 + 1)
scaled with NB versus time t scaled with τnmode for polymer length N = 5, 10, 20, 40. (b) As in
(a) but for the stress component (σ22 + 1) unscaled.

which is only valid for a = −1/2 (as also shown in GH) and thus at intermediate
times σ11 ∼ N 2t−1/2, in agreement with our numerical results shown in figure 3(a).
Similarly, the weak stress component is σ22 = O(N ) at short times and σ22 =O(1) at
long times. Matching these two stresses at intermediate times with a single power law
tb gives

(σ22)short = N (N2t)b = (σ22)long = 1

(
t

N2

)b

, (6)

which is only valid for b = −1/4 and thus at intermediate times σ22 ∼ N 1/2t−1/4 as
shown in figure 3(b).

Studying the two components of the polymer stress separately, two conclusions
may be derived. First, the anisotropy in the stress relaxation suggests a corresponding
anisotropy in the configuration relaxation. This issue is being pursued further in the
following section. Secondly, the different magnitude of the two stresses suggests that
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the polymer chain is far from equilibrium during the entire transient relaxation as
discussed further in § 5.

4. Configuration relaxation
Studying the relaxation of the polymer configuration is essential to understand

the configuration’s impact on the properties of the polymeric solution including
the polymer stress. Previous studies have tried to do this by employing several
conformational functions. For the current problem, the transverse evolution of the
polymer chain at intermediate times was determined by monitoring the transverse
motion of the central bead in the chain (Grassia & Hinch 1996) or the motion of
individual beads along the chain (Doyle et al. 1997). In both studies, the monitoring
was restricted to short time periods. In this paper, we follow a different path
considering new conformational functions and, by using the scaling law methodology,
we present the configuration evolution over the same time period as that for our
stress relaxation while we determine the configuration’s dependence on both time t

and polymer length N . We are also interested in studying the entire configuration
relaxation of the chain including its transverse and longitudinal relaxation, its
rotational relaxation and the motion of the centre of mass.

To analyse the evolution of the polymer chain we calculate the eigenvalues of the
gyration tensor

R2
G =

1

N + 1

N+1∑
i=1

(X i − Xc)(X i − Xc), (7)

where Xc =
∑N+1

i=1 X i/(N +1) is the centre of mass of the chain. The first (largest)
eigenvalue measures the size of the chain along its major axis (i.e. the chain’s length),
and may be used to study the longitudinal reduction of the polymer chain. The other
two eigenvalues measure the size of the chain along its two minor axes (i.e. the chain’s
width), and may be used to study the transverse evolution of the polymer chain.
These conformational functions involve all length scales, from that of the single bead
to the length scale of the entire chain, and thus can be used to describe the polymer
evolution over extended time periods.

Figure 5(a) shows the evolution of the second eigenvalue R2
G,2 for two representative

chain lengths, N = 5 and 160. (The evolution of the third eigenvalue R2
G,3 is similar

and has been omitted.) The results for small N reveal the entire transverse relaxation
of the polymer chain. At short times, the beads show a free diffusion, i.e. R2

G,2 ∼ t .
At intermediate times, a slower transverse displacement is observed. For N = 5,
the intermediate-time behaviour is limited, but it is extended for longer chains; as
this figure reveals, for N = 160, the second eigenvalue R2

G,2 shows a growth of t3/4.
Finally, at long times, no transverse configuration relaxation is observed; the polymer
transverse configuration has reached equilibrium and the evolution of R2

G,2 shows

a plateau. The final value of R2
G,2 is predicted well by the results of Kranbuehl &

Verdier (1977), i.e. (R2
G,2)eq = 0.176 (R2

G)eq ∼ Nb2. We emphasize that the described
behaviour is based not only on the two values of polymer length shown in figure 5(a),
but also on our full set of values (i.e. N = 5, 10, 20, 40, 160, 400) which are omitted in
this figure for clarity (but included in figure 5b).

To further investigate the most interesting intermediate-time behaviour, it is still
computationally impractical to study a long polymer chain for an extended time
period. Clearly, a scaling law should be used to match the behaviour of chains with
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Figure 5. Transverse evolution of the polymer chain. (a) Evolution of the second eigenvalue
R2

G,2 of the gyration tensor for two representative chain lengths N = 5, 160. This figure also
reveals the scaling law for R2

G,2 at short times. (Our results for N = 10, 20, 40, 400 have been
omitted for clarity.) (b) Scaling law for the evolution of R2

G,2 at intermediate times. This curve
was generated by employing chains with N = 5, 10, 20, 40, 160, 400.

different lengths. This idea is employed in figure 5(b) where we present the evolution
of the second eigenvalue R2

G,2 for our full set of polymer lengths, scaling R2
G,2 with N

at long times) and the time t with τnmode . (Note that N and τnmode are the scales of
R2

G,2 and t , respectively, at the end of the intermediate-time behaviour.) As this figure
reveals, at intermediate times the chain’s width shows a clear growth,

R2
G,2

N
∼

(
t

N2

)3/4

or R2
G,2 ∼ N−1/2 t3/4, (8)

over several time decades.
The transition from the short-time to the intermediate-time behaviour and the

configuration evolution at intermediate times were first studied by Grassia & Hinch
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(1996). By assuming a quasi-static balance between the tension forces and the
transverse diffusive forces on the beads, the authors determined the transverse link
growth and from that they predicted a mean-square transverse bead (and chain)
motion growing as t1/2. This seems to contradict our results for the evolution of
the two minor eigenvalues of the gyration tensor. Assuming that our numerical
results are correct, the difference should result from the simplification the authors
had to employ to connect the transverse evolution of beads with that of links, i.e. by
assuming that the typical wavelength of the transverse bead displacement is O(N ).
We note that GH supported their theoretical analysis by numerically determining
the transverse evolution of the middle bead, but their results are limited, valid only
for a short time period and for short chains, i.e. from N =4 to 12 as shown in
their figure 7. Our conclusion is also supported by the results of Doyle et al. (1997),
who numerically calculated the transverse diffusion of individual beads along a
single chain with 50 beads and found a growth rate of t3/4 over two time decades
(as shown in their figure 14). Furthermore, our numerical results are supported by
simple scaling arguments. Similarly to the stress, given the transverse growth of the
polymer chain for short and long times, scaling arguments predict that the observed
power law at intermediate times is the simplest power law which can match the
transverse growth at short and long times. Observe that at short times t = O(1/N 2)
the chain’s width is R2

G,2 = O(N−2), while R2
G,2 =O(N ) at long times t = O(N 2).

Matching these two magnitudes at intermediate times with a single power law ta

gives

(
R2

G,2

)
short

= N−2 (tN2)a =
(
R2

G,2

)
long

= N

(
t

N2

)a

, (9)

which is only valid for a = 3/4 and, thus, at intermediate times R2
G,2 ∼ N−1/2t3/4 in

agreement with our numerical results shown in figure 5(b).
We now turn our attention to the longitudinal length of the polymer chain and

present the reduction of the first eigenvalue R2
G,1 of the gyration tensor with respect

to its initial value in figure 6. This figure reveals that at short times the chain length is
reduced as �R2

G,1 ≡ R2
G,1(0) − R2

G,1(t) ∼ N 2t , while at intermediate times it is reduced
as

�R2
G,1

N2
∼

(
t

N2

)1/2

or R2
G,1(0) − R2

G,1(t) ∼ Nt1/2. (10)

We note that at the end of short times �R2
G,1 = O(1) while at the end of intermediate

times �R2
G,1 = O(N 2). Thus, during both short and intermediate times, the chain’s

length has a magnitude of R2
G,1 =O(N 2), i.e. the polymer chain is practically straight.

This conclusion is shown clearly in figure 7(a) where we replot our results for the
first eigenvalue R2

G,1 with respect to its value at equilibrium, (R2
G,1)eq = 0.76 (R2

G)eq
(Kranbuehl & Verdier 1977). In addition, at times t ∼ τnmode , the chain shows a sharp
decrease in the average polymer length; as revealed in figure 7(b), at long times, the
polymer length shows an exponential decay

δR2
G,1(t) ≡ R2

G,1(t) −
(
R2

G,1

)
eq

∼ N 2 exp(−2.3t/τnmode), (11)

(i.e. its time scale is identical to that of the polymer stress). Since, at long times,
the chain shows negligible transverse evolution, we may conclude that only the
longitudinal relaxation of the polymer chain contributes to the stress relaxation at
these times. Similarly to the rest of the properties we have discussed in this paper,
scaling arguments verify that the observed power law during intermediate times is the
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Figure 6. Longitudinal reduction of the polymer chain at (a) short times and (b) intermediate
times. Note that we plot the difference �R2

G,1 ≡ R2
G,1(0) − R2

G,1(t). Both curves were generated
by employing chains with N = 5, 10, 20, 40, 160, 400.

simplest power law which can match the conditions at the end of the short times and
the beginning of long times. By requiring that

(
�R2

G,1

)
short

= 1 (tN2)a =
(
�R2

G,1

)
long

= N 2

(
t

N2

)a

, (12)

we can easily derive that a = 1/2 and thus, at intermediate times, the length reduction
is given by (10) above.

To investigate the rotation of the entire polymer chain, in figure 8 we plot the
relaxation of the rotation function Rot(t) ≡ 〈U(t) · U(0)〉, where U is the unit end-to-
end vector. We note that values of 1 result from polymer chains aligned in the ‘1’
direction while values of 0 result from polymer chains with random orientations. At
short and intermediate times, the chain is still aligned in the (original) ‘1’ direction,
while it starts to rotate at times t ∼ τnmode . As this figure clearly reveals, the rotational
relaxation starts much later than the longitudinal relaxation (even though they both
have the same long-time scaling). As depicted in figure 8(b), the rotational relaxation
at long times follows an exponential decay ≈ exp(−0.92 t/τnmode). (The coefficient of
0.92 =0.4 × ln 10 is approximate owing to noise.)
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Figure 7. Longitudinal evolution of the polymer chain. (a) Scaling law for the evolution of
the first eigenvalue R2

G,1 of the gyration tensor at short and intermediate times for chain length
N =5, 10, 20, 40, 60, 80. Note that we plot the difference δR2

G,1 ≡ R2
G,1(t) − (R2

G,1)eq (where
(R2

G,1)eq = 0.76 (R2
G)eq is the value of the first eigenvalue at equilibrium) scaled by the value of

the difference at time t = 0, i.e. δR2
G,1(0) ≡ R2

G,1(0) − (R2
G,1)eq . (b) Scaling law for the evolution

of R2
G,1 at long times for the same values of chain length N as in (a).

We end this section by considering the diffusion of the entire chain described by
the motion of the polymer’s centre of mass Xc. Summing (1) over all beads, the sum
of the corrective forces and the tensions is zero, resulting in a simple balance between
the hydrodynamic force and the sum of the ‘white noise’ Brownian forces,

ζ
dXc

dt
= Frand

c ≡ 1

N + 1

N+1∑
i=1

Frand
i . (13)

Therefore, the centre of mass follows an ordinary diffusion

〈(Xc(t) − Xc(0))2〉 = 6 DCt, (14)

with diffusivity DC = kBT /(N + 1)ζ . The diffusion of the chain’s centre of mass
produces an isotropic stress − I (where I is the unit 3 × 3 matrix) which is present at
all times and is the only stress at equilibrium. We note that in Bird et al. (1987) the
equation of motion for the centre of mass in the absence of hydrodynamic interactions
and excluded-volume effects does not contain the Brownian force, which produces
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Figure 8. Rotational evolution of the polymer chain. (a) Evolution of the rotation function
Rot(t) ≡ 〈U(t) · U(0)〉 (where U is the unit end-to-end vector) at short and intermediate times
for chain length N = 5, 10, 20, 40. Also included is the longitudinal evolution of the polymer
chain δR2

G,1/δR
2
G,1(0) from figure 7(a). (b) Evolution of the rotation function at long times for

the same values of chain length N as in (a). (All curves fall as one if we scale Rot(t) with its
scaling at the beginning of the rotation relaxation.)

a free diffusion in the absence of external forces; this error is repeated in several
chapters of the book, e.g. see their equations (13.2-6), (14.2-5) and (15.1-2).

As a closure to this section, we note that a comparison of the evolution of the first
and second eigenvalues (figures 5 and 6) with the stress relaxation shown in figure 3
reveals that the transition from the short-time to the intermediate-time behaviour
and from the latter to the long-time behaviour occurs at exactly the same time
for both functions. Thus, the evolution of the eigenvalues is a proper measurement
of the configuration evolution for the entire chain and its impact on the stress
relaxation.
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5. Relaxation of a straight bead-rod chain: discussion
Based on our numerical results and the application of scaling laws, we now have

a clear picture for both the stress relaxation and the configuration evolution from
short up to long times. In summary, at short times t � N−2, the chain’s width grows
as R⊥ ∼ t1/2 and its length is reduced as R‖(0) − R‖ ∼ Nt; at intermediate times
N−2 � t � N2, the corresponding values are R⊥ ∼ N−1/4t3/8 and R‖(0) − R‖ ∼ t1/2.
During both short and intermediate times, the chain is practically straight, i.e. its
length is R‖ = O(N ). At long times t � N 2, no transverse configuration relaxation is
observed while the chain’s length decays as R2

‖ − (R2
‖)eq ∼ N 2 exp(− 2.3t/τnmode). Until

late in long times the chain is practically aligned along the initial ‘1’ direction;
afterwards, the chain shows a rotational relaxation which follows an exponential
decay similar to that for the longitudinal length. At all times, the centre of mass of
the polymer follows a free diffusion with constant diffusivity DC = kBT /(N + 1)ζ . In
addition, at short times, the strong stress component is σ11 ∼ N 3 while the weak stress
component is σ22 = (N + 1) (in absolute value since σ22 is negative). At intermediate
times, the stress decay is anisotropic; σ11 ∼ N2t−1/2 while σ22 ∼ N 1/2t−1/4. Finally, at
long times, the polymer stress shows an exponential decay towards equilibrium:
σ11 ∼ N exp(−2.3t/τnmode) and σ22 ∼ exp(−2.3 t/τnmode); thus, at times t ∼ τnmode ∼ N 2,
the two stress components still have different magnitudes: σ11 = O(N ) while σ22 = O(1).

Throughout this section, we denote the longitudinal and transverse lengths of the
chain as R‖ and R⊥, of the links as d‖ and d⊥, and the longitudinal and transverse
positions of the beads (with respect to the chain’s centre of mass) as X‖ and X⊥,
respectively. (The longitudinal and transverse directions refer to the orientation of
the entire chain.) We emphasize that for an elongated chain, the chain’s width R⊥
scales similarly to the transverse bead position X⊥, while the chain’s length R‖
scales similarly to the sum of the longitudinal length d‖ of all links, i.e. R‖ ∼

∑
d‖.

In addition, owing to the link inextensibility, the transverse length d⊥ of a link is
associated with its longitudinal length d‖, i.e. d

2
⊥ = b2 − d2

‖ where b is the fixed distance

between two successive beads. Thus, properties which depend on R‖, d‖ or d⊥ should
scale with the chain’s length, while those which depend on R⊥ or X⊥ should scale
with the chain’s width.

The conformational evolution for a typical polymer chain is shown in figure 9. The
first few configurations show the transverse chain motion, while the last ones reveal
the chain’s longitudinal relaxation towards the equilibrium coil-like shape.

5.1. Relaxation at short times

Following the work of Grassia & Hinch (1996), at short times t � N−2, the chain
is almost straight and since σ11 ∼ N 3 ∼

∑
T we may conclude that the tensions on

each bead scale as T ∼ N2. Thus, at these times, the transverse component of the
tension force on each bead is F ten

⊥ ∼ T d⊥ ∼ N 2t1/2 where d⊥ ∼ X⊥ ∼ R⊥ ∼ t1/2 owing to
the transverse free diffusion. The transverse evolution of each bead scales similar to
that of the entire chain, i.e. X⊥ ∼ R⊥ ∼ t1/2; by combining this with the equation of
motion, (1), we conclude that the transverse component of the Brownian force on each
bead scales as F rand

⊥ ∼ t−1/2. At short times, F ten
⊥ � F rand

⊥ and the dominant transverse
Brownian force causes the beads to follow the free transverse diffusion shown in
figure 5 as well as a constant weak stress component σ22 ∼ NX⊥ F rand

⊥ ∼ N shown
in figure 2(b). Thus, the transverse free diffusion and the associated longitudinal
reduction are not able to produce any stress relaxation. During these times, the
transverse tension force grows faster than the corresponding Brownian force. At
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Figure 9. Typical chain configurations with N = 40 at times t = 10k τrand , where
k = −4, . . . , 2.

the transition times t ∼ N−2, F ten
⊥ ∼ F rand

⊥ ∼ N and the free diffusion of the beads is
arrested.

During short times, owing to the link inextensibility, the longitudinal length of each
link shortens as b2 − d2

‖ = d2
⊥ ∼ t; this results in a chain’s length reduction R2

‖(0) −
R2

‖ ∼ N 2b2 − N 2d2
‖ ∼ N 2t . Thus, the chain’s length reduction shown in figure 6(a)

results from the transverse bead diffusion and the link inextensibility.
The growth rate of the chain’s width and the reduction rate of its length are

G⊥ ∼ dR⊥

dt
∼ t−1/2, G‖ ∼

d(R‖(0) − R‖)

dt
∼ N, (15)

respectively. Therefore, the short times t � N−2 denote a period of dominant
transverse growth; this dominance is extended until the transition times t ∼ N−2

where the two rates show a similar scaling G⊥ ∼ G‖ ∼ N .

5.2. Relaxation at intermediate times

At intermediate times N−2 � t � N2, the tensions on each bead are T ∼ Nt−1/2 since
the polymer is still practically straight while σ11 ∼

∑
T ∼ N 2 t−1/2. We have verified

the scaling of the tensions numerically by calculating the average tensions among the
beads over the same time period as the polymer stress. (Also note that these tensions
match at the transition times t ∼ N−2 the tensions valid at short times.) Therefore,
the intermediate times are associated with a relaxation of tensions (necessary to
ensure link inextensibility) from a magnitude of T = O(N 2) at times t = O(1/N 2) to a
magnitude of T = O(1) at times t = O(N 2).

At these times, the strong stress component σ11 shows the same decay law (t−1/2)
as that near equilibrium (Dimitrakopoulos et al. 2001). We emphasize that this
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is a mere coincidence. The flexible chain during intermediate times is far from
equilibrium: the polymer is still practically straight since its longitudinal length is
R‖ =O(N ) (as shown in figure 7a), while at the beginning of the intermediate times
the magnitude of the strong stress is σ11 = O(N 3), much greater than the magnitude
of the stress near equilibrium. This conclusion is also obvious if we consider that
the weak stress component σ22 shows a different power-law decay at these times,
i.e. t−1/4.

During intermediate times, the participation of the different length scales in the
polymer relaxation results in a slower transverse growth R⊥ ∼ N−1/4t3/8 as well as in
a slower longitudinal reduction R‖(0) − R‖ ∼ t1/2 compared to those at short times.
The growth rate of the chain’s width and the reduction rate of its length are now

G⊥ ∼ dR⊥

dt
∼ N−1/4 t−5/8, G‖ ∼

d(R‖(0) − R‖)

dt
∼ t−1/2, (16)

respectively. At intermediate times G‖ � G⊥ and thus, with respect to the entire chain,
these times denote a period of dominant longitudinal reduction. By comparing the
link longitudinal and transverse growth rates, Grassia & Hinch (1996) have shown
that the motion of the links is primarily transverse at these times. The difference
between the links and chain relaxation may be attributed to the participation of the
different relaxation modes, as discussed at the end of this subsection.

Based on the understanding that the intermediate times denote a period of
dominant longitudinal reduction, it is natural to seek a mechanism associated with
the longitudinal direction of the polymer relaxation. In particular, consider that the
length reduction of the polymer chain reveals the longitudinal component of the force
acting on the entire chain

F‖ ∼ ζ ch

d�R‖

dt
∼ Nt−1/2, (17)

where ζ ch ∼ N is the friction coefficient for the entire chain. This force is nothing
other than the tension force along the polymer chain, F ten

‖ ∼ T d‖ ∼ Nt−1/2 since the

tensions during intermediate times relax as T ∼ Nt−1/2 while the polymer chain is
still practically straight, i.e. d‖ ∼ 1. Based on the above, the relaxation of the stress
component σ11 at intermediate times results from the corresponding relaxation of the
polymer length. In particular, by considering the entire chain or summing over all
beads, we obtain

σ11 ∼ R‖ F‖ ∼ Nd‖ F‖ ∼ N 2t−1/2, (18)

(where we use R‖ ∼ N and d‖ ∼ 1) which agrees with the results shown in figure 3(a).
The chain’s length reduction and the corresponding longitudinal force satisfy the

equipartition of energy, i.e. F‖ �R‖ ∼ NkBT , which reveals that during intermediate
times there exists a quasi-steady equilibrium in the longitudinal direction. We note
that although in this paper we focus on the chain’s longitudinal relaxation, the
proposed mechanism is identical to that found in Grassia & Hinch (1996) based
on a sideways motion model. To explain this, observe that the chain’s length
reduction is associated (owing to the link inextensibility) with a transverse link growth
d2

⊥ ∼ N−2 (R2
‖(0) − R2

‖) ∼ N−1t1/2 and thus, the transverse link growth is connected with
the tensions T via the relation d2

⊥ ∼ T −1 as found in GH by assuming a quasi-steady
solution in their sideways motion model. (We note that we have verified numerically
the transverse link growth d2

⊥ ∼ N−1t1/2 by monitoring several links along a chain
with N = 160.)
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The longitudinal mechanism is in agreement with the recent results of Ghosh
et al. (2001) where the longitudinal force along a Cramer’s chain was numerically
determined as a function of the chain length and was shown to follow the predictions
of the FENE model during relaxation. To explain this, we have to consider that for a
practically straight chain (as in our problem until the end of the intermediate times)
the FENE model predicts a (longitudinal) force identical to that for a bead-rod chain
with the same extension,

F FENE =
HQ

1 − Q2/Q2
o

∼ N 2

R2
‖(0) − R2

‖
∼ Nt−1/2, (19)

where the proportionality constant H scales as H ∼ N−1, Qo ∼ N is the maximum
extension, Q is the end-to-end distance while we use R2

‖(0) − R2
‖ ∼ Nt1/2 from (10)

above. This coincidence results from the fact that the FENE model is based on
the assumption that the chain can sample all configurations for a given end-to-
end distance, i.e. the configuration distribution function has come to equilibrium.
Therefore, the FENE assumption is in agreement with the quasi-steady equilibrium
of the bead-rod chain during relaxation. We emphasize that the discussion above
shows that a FENE dumbbell is able to predict the correct longitudinal relaxation of
the entire chain, but not the polymer’s transverse relaxation. (Furthermore note that
a dumbbell cannot physically represent the relaxation of an initially straight chain;
the latter should be discretized at least as a trimmer so that the chain has the ability
to relax from the straight configuration to the coil-like one.)

Considering the transverse relaxation at intermediate times, we may conclude that
the relaxation of the stress component σ22 results from the relaxation of the width
of the polymer chain. In particular, the transverse evolution of the polymer chain,
R⊥ ∼ X⊥ ∼ N−1/4t3/8, is associated with a dominant transverse force on each bead
F⊥ ∼ ζ dX⊥/dt ∼ N−1/4t−5/8; both produce a stress decay σ22 ∼ NX⊥ F⊥ ∼ N 1/2t−1/4 in
agreement with the results shown in figure 3(b).

The growth t3/4 of the chain’s width at intermediate times may be attributed
to the participation of the different relaxation modes. In particular, if the chain
were to relax transversely with only the longest mode, then the width evolution
would be (R2

⊥)LM ∼ R2
‖(0) − R2

‖ ∼ Nt1/2, which obviously overestimates the true width

evolution as well as the value of R2
⊥ at the end of the intermediate times (the longest

mode predicts a final value (R2
⊥)LM ∼ N 2 � N ). On the other hand, if the chain

were to relax transversely with only the shortest mode, the width evolution would
be (R2

⊥)SM ∼ d2
⊥ ∼ b2 − d2

‖ ∼ N−2 (R2
‖(0) − R2

‖) ∼ N−1t1/2, which underestimates the true

width evolution. The participation of the different modes in the transverse relaxation
results in a relaxation rate between the two extreme rates of the shortest and longest
modes.

Proceeding further, we may conclude that at the beginning of the intermediate
times t ∼ N−2 the chain relaxes transversely with its smallest mode only due to the
short-time transverse free diffusion (i.e. R2

⊥ ∼ d2
⊥). As the time increases, longer modes

participate in the chain relaxation. At the end of intermediate times, the chain does
not relax with its longest mode only, but some other (long) modes also participate in
the relaxation. This conclusion is supported by the observation that, at times t ∼ N 2,
the chain is still practically straight, i.e. R2

‖ = O(N 2) even though the chain’s width

has reached its scale at equilibrium, R2
⊥ = O(N ). (If the chain were relaxing at times

t ∼ N 2 with only its longest mode while being practically straight, its width would be
R2

⊥ ∼ R2
‖(0) − R2

‖ ∼ N 2 � N .)



Stress and configuration relaxation of an initially straight flexible polymer 283

To provide a qualitative picture of the mode relaxation, we may determine the
evolution of the average relaxation mode by replacing the contribution of the different
modes by a single mode with a time-dependent length and amplitude. The transverse
growth of such a mode is the same as that for the entire chain, i.e. R⊥, while the
link inextensibility at the mode wave results in a time-dependent wavenumber NM

which should follow the requirement R2
⊥ ∼ N−2

M (R2
‖(0) − R2

‖) or NM ∼ N 3/4t−1/8. Thus,

the wavenumber of the average mode decreases with time, from NM ∼ N at times
t ∼ N−2, to NM ∼ N 1/2 at times t ∼ N 2, i.e. the mode’s wavelength increases with time
from RM

‖ ∼ 1 at t ∼ N−2 to RM
‖ ∼ N 1/2 at t ∼ N 2. This analysis verifies our previous

conclusions on the mode relaxation. The different (long) modes which participate
in the chain’s relaxation at the end of intermediate times are expected to decay
afterwards and may be responsible for the specific relaxation rate of the bead-rod
model during the transient long times.

5.3. Relaxation at long times

At the end of the entire relaxation, the polymer chain is expected to have reached
equilibrium; thus, the following question arises: how close to equilibrium is the
polymer chain during the (transient) long times? Looking carefully at figure 7(b), it
is clear that, at the beginning of the exponential decay, the polymer length is still of
magnitude R2

‖ =O(N 2), i.e. the chain is still practically straight. In addition, the entire

exponential decay shown in figure 7(b) has not significantly changed the polymer
length. (This is especially true if we consider that the behaviour shown in this figure
is a scaling law valid even for very large N ). Thus, during the long times of the
transient dynamics, the chain is still far from equilibrium. This conclusion is also
supported by the magnitude of the strong stress component at the beginning of long
times; figure 4(a) shows that σ11 = O(N ), much greater than its equilibrium values
(σ11)eq = O(1).

Therefore, only near the end of the long-time behaviour of transient dynamics is the
chain close to equilibrium, where it obtains a coil-like shape. By requiring that the
chain is close to equilibrium when R2

G,1(t) − (R2
G,1)eq � (R2

G,1)eq , the exponential decay

of the chain’s length shown in figure 7(b) leads to t � N 2 lnN , i.e. the times
∼ N2 ln N denote the transition from the nonlinear to the linear dynamics for the
problem studied in this paper. We emphasize that monitoring transient properties
near equilibrium produces results indistinguishable from the noise of the Brownian
motion (especially when no variance reduction technique is employed, as happens in
our study.)

Even though the polymer has not reached the linear regime at the transient
long times, its behaviour at these times is similar to the corresponding behaviour
near equilibrium. Both processes are associated with the relaxation of the chain’s
longitudinal length. Thus, they both begin at times t ∼ τnmode ∼ N 2 and show an
exponential decay with time scale a multiple of τnmode , i.e. the time scale associated
with the entire polymer chain. In addition, for both problems, the stress decay rate
is twice that of the longitudinal length. Therefore, the polymer behaviour at the
transient long times could be explained similarly to that for the linear relaxation.
In particular, observe that σ11 ∼

∑
d‖ F‖ where d‖ is the longitudinal separation of

adjacent beads d‖ ∼ R‖/N ∼ exp(−1.15t/τnmode), and F‖ is the force acting on the link
(or bead). Because of the exponential decay in d‖, the corresponding force F‖ is linear
to d‖, similarly to what happens near equilibrium. Thus, σ11 ∼ N exp(−2.3t/τnmode), in
agreement with our numerical results. We could also explain the polymer behaviour
considering the entire chain length. In this case, σ11 ∼ R‖ F‖ where now F‖ is the force
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acting on the entire chain F‖ ∼ R‖/N based on the entropic model, and we find again
the correct stress scaling σ11 ∼ N exp(−2.3 t/τnmode). While these explanations predict
the correct scaling for the strong stress component σ11, they fail to predict the correct
magnitude for the weak stress component σ22. This failure is another indication that,
although similar to linear relaxation, the long time relaxation of an initial straight
chain is still nonlinear, i.e. far from equilibrium. In addition, it shows that knowledge
of the entire polymer stress (i.e. both stress components) helps us to understand the
polymer relaxation better.

6. Comparison with experimental results on DNA relaxation
As a closure to this study, we compare our computational results with the

experimental findings from the work of Perkins et al. (1994). In that study, single DNA
molecules 4 to 43 µm long were stretched to full extension in a flow field, and their
relaxation was measured when the flow stopped. The molecules were manipulated
by attaching a 1 µm polystyrene sphere at one end of the chain and employing
optical tweezers. We note that the relaxation of a tethered chain is not the same as
that of a free chain (the tethered relaxation nearly corresponds to a free relaxation
with twice the chain length); nevertheless, here we attempt a comparison with our
results.

The shapes of DNA molecules shown in figure 2(a, b) of the experimental study
are qualitatively similar to the shapes of the half portion of the molecules from our
study (figure 9). The DNA molecules also reveal limited rotation even at long times,
as reported in our study. In addition, in the experimental work, the visual length of
DNA molecules was measured after the flow was turned off and was found to exhibit
a single exponential decay at long times, qualitatively similar to that found in our
study.

In quantitative terms, Perkins et al. reported that the longest relaxation time
increases with the polymer length as τDNA ∼ N 1.66 ± 0.10. (We emphasize that they
measured the visual length of the polymer and not the more relevant length squared).
Further reading of the experimental study reveals that Perkins et al. also employed
dynamic scaling with three length templates and found that the scaling exponent
increases with increasing length; the longest length templates (L = 41 µm) gave a
time scale τDNA ∼ N 1.79 ± 0.08. The authors reported that these templates may be more
indicative of the true value of the scaling exponent because the corresponding data
were better and contained more information. The same experimental group reported
that longer chains reveal higher scaling exponents in a study on the hydrodynamics
of a DNA molecule in a flow field as well (Larson et al. 1997).

Therefore, it is unclear what the true exponent is for the longest relaxation time
of DNA. It is also unclear what the influence of the tethered end is. (The same
experimental group reported the longest time scale for free DNA relaxation, but
unfortunately they did not report on the scaling exponent (Perkins et al. 1999)).
Nevertheless, assuming that the true value falls between those predicted by the Rouse
and Zimm theories, this finding could be explained by our results. In particular, our
study suggests that the long-time chains of the experimental work may still be far
from equilibrium, similar to our long-time numerical results. Thus, hydrodynamics
interactions may also not be so important for the experimental study; this could
produce an exponent between those predicted by the two theories. Of course,
our conclusion can only be verified or rejected through further experimental and
computational studies.
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7. Conclusions
In this paper, we studied the conformational and stress relaxation of an initially

straight flexible polymer by employing Brownian dynamics simulations based on
a discrete flexible wormlike chain model. We duplicated the numerical results
for the strong stress component σ11 of previous studies (Grassia & Hinch 1996;
Doyle et al. 1997, 1998) over extended time periods through the use of scaling laws.
The entire relaxation of the weak stress component σ22 was also presented over
the same extended times. Studying the entire stress tensor helps us understand the
polymer behaviour better; for example, the anisotropy in the polymer stress relaxation
at intermediate times helped reveal the corresponding anisotropy in the configuration
relaxation.

The stress relaxation was accompanied by the transverse and longitudinal relaxation
of the polymer chain over the same extended time periods. To achieve this, we
determined numerically the dynamic evolution of the eigenvalues of the gyration
tensor; their evolution was shown to be an appropriate measurement of the
configuration evolution for the entire chain and its impact on the stress relaxation.
The configuration relaxation was shown to be anisotropic at intermediate times:
the chain’s length is reduced as R‖(0) − R‖ ∼ t1/2 while its width is increased as
R⊥ ∼ N−1/4t3/8. By focusing on the chain’s longitudinal relaxation, a quasi-steady
equilibrium of the link tensions in shown to exist along the chain’s length; the
mechanism is identical to that found in Grassia & Hinch (1996) based on a sideways
motion model. This mechanism also explains the ability of the FENE model to
describe the longitudinal relaxation of the flexible bead-rod chain. In addition to the
transverse and longitudinal relaxation, the rotation of the entire chain and the motion
of its centre of mass were studied. The former was shown to be significant only late at
long times (in agreement with experimental observations on DNA relaxation) while
the latter follows a free diffusion at all times. The entire relaxation described in
this article including the (transient) long-time behaviour was shown to be far from
equilibrium.

By monitoring the evolution of the eigenvalues of the chain’s gyration tensor and
applying the scaling law methodology, the configuration relaxation was determined
over extended time periods. Knowledge of the conformational behaviour helps us
understand the polymer properties including the polymer stress. Thus, we believe
that the methodology we developed for monitoring the polymer configuration is well
suited to studying other problems in the area of polymer rheology.
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discussions and suggestions on the relaxation mechanism. Helpful discussion with
Professors Anisimov and Dorfman is also acknowledged. This work was supported
by the Minta Martin Research Fund at the University of Maryland. The computations
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